91 research outputs found

    Component Outage Estimation based on Support Vector Machine

    Full text link
    Predicting power system component outages in response to an imminent hurricane plays a major role in preevent planning and post-event recovery of the power system. An exact prediction of components states, however, is a challenging task and cannot be easily performed. In this paper, a Support Vector Machine (SVM) based method is proposed to help estimate the components states in response to anticipated path and intensity of an imminent hurricane. Components states are categorized into three classes of damaged, operational, and uncertain. The damaged components along with the components in uncertain class are then considered in multiple contingency scenarios of a proposed Event-driven Security-Constrained Unit Commitment (E-SCUC), which considers the simultaneous outage of multiple components under an N-m-u reliability criterion. Experimental results on the IEEE 118-bus test system show the merits and the effectiveness of the proposed SVM classifier and the E-SCUC model in improving power system resilience in response to extreme events

    Interdependency of Transmission and Distribution Pricing

    Full text link
    Distribution markets are among the prospect being considered for the future of power systems. They would facilitate integration of distributed energy resources (DERs) and microgrids via a market mechanism and enable them to monetize services they can provide. This paper follows the ongoing work in implementing the distribution market operator (DMO) concept, and its clearing and settlement procedures, and focuses on investigating the pricing conducted by the DMO. The distribution locational marginal prices (D-LMPs) and their relationship with the transmission system locational marginal prices (T-LMPs) are subject of this paper. Numerical simulations on a test distribution system exhibit the benefits and drawbacks of the proposed DMO pricing processes.Comment: Accepted to 2016 IEEE PES Innovative Smart Grid Technologies (ISGT

    Distribution market as a ramping aggregator for grid flexibility support

    Full text link
    The growing proliferation of microgrids and distributed energy resources in distribution networks has resulted in the development of Distribution Market Operator (DMO). This new entity will facilitate the management of the distributed resources and their interactions with upstream network and the wholesale market. At the same time, DMOs can tap into the flexibility potential of these distributed resources to address many of the challenges that system operators are facing. This paper investigates this opportunity and develops a distribution market scheduling model based on upstream network ramping flexibility requirements. That is, the distribution network will play the role of a flexibility resource in the system, with a relatively large size and potential, to help bulk system operators to address emerging ramping concerns. Numerical simulations demonstrate the effectiveness of the proposed model on when tested on a distribution system with several microgrids.Comment: IEEE PES Transmission and Distribution Conference and Exposition (T&D), Denver, CO, 16-19 Apr. 201

    Capturing Distribution Grid-Integrated Solar Variability and Uncertainty Using Microgrids

    Full text link
    The variable nature of the solar generation and the inherent uncertainty in solar generation forecasts are two challenging issues for utility grids, especially as the distribution grid integrated solar generation proliferates. This paper offers to utilize microgrids as local solutions for mitigating these negative drawbacks and helping the utility grid in hosting a higher penetration of solar generation. A microgrid optimal scheduling model based on robust optimization is developed to capture solar generation variability and uncertainty. Numerical simulations on a test feeder indicate the effectiveness of the proposed model.Comment: IEEE Power and Energy Society General Meeting, 201

    Machine Learning Applications in Estimating Transformer Loss of Life

    Full text link
    Transformer life assessment and failure diagnostics have always been important problems for electric utility companies. Ambient temperature and load profile are the main factors which affect aging of the transformer insulation, and consequently, the transformer lifetime. The IEEE Std. C57.911995 provides a model for calculating the transformer loss of life based on ambient temperature and transformer's loading. In this paper, this standard is used to develop a data-driven static model for hourly estimation of the transformer loss of life. Among various machine learning methods for developing this static model, the Adaptive Network-Based Fuzzy Inference System (ANFIS) is selected. Numerical simulations demonstrate the effectiveness and the accuracy of the proposed ANFIS method compared with other relevant machine learning based methods to solve this problem.Comment: IEEE Power and Energy Society General Meeting, 201

    Day-Ahead Solar Forecasting Based on Multi-level Solar Measurements

    Full text link
    The growing proliferation in solar deployment, especially at distribution level, has made the case for power system operators to develop more accurate solar forecasting models. This paper proposes a solar photovoltaic (PV) generation forecasting model based on multi-level solar measurements and utilizing a nonlinear autoregressive with exogenous input (NARX) model to improve the training and achieve better forecasts. The proposed model consists of four stages of data preparation, establishment of fitting model, model training, and forecasting. The model is tested under different weather conditions. Numerical simulations exhibit the acceptable performance of the model when compared to forecasting results obtained from two-level and single-level studies
    • …
    corecore